- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Didier, Annie (2)
-
Amado_Olivo, Vicente (1)
-
Cherinka, Brian (1)
-
Daftry, Shreyansh (1)
-
Folsom, Larkin (1)
-
Ghosh, Sourish (1)
-
Hedrick, Gabrielle (1)
-
Higa, Shoya (1)
-
Islam, Tanvir (1)
-
Iwashita, Yumi (1)
-
Kerzendorf, Wolfgang (1)
-
Lamarre, Olivier (1)
-
Laporte, Christopher (1)
-
Mattmann, Chris A. (1)
-
Nomura, Shunichiro (1)
-
Ono, Masahiro (1)
-
Otsu, Kyohei (1)
-
Park, Hyoshin (1)
-
Qiu, Dicong (1)
-
Rothrock, Brandon (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Large scientific institutions, such as the Space Telescope Science Institute, track the usage of their facilities to understand the needs of the research community. Astrophysicists incorporate facility usage data into their scientific publications, embedding this information in plain text. Traditional automatic search queries prove unreliable for accurate tracking due to the misidentification of facility names in plain text. As automatic search queries fail, researchers are required to manually classify publications for facility usage, which consumes valuable research time. In this work, we introduce a machine learning classification framework for the automatic identification of facility usage of observation sections in astrophysics publications. Our framework identifies sentences containing telescope mission keywords (e.g., Kepler and TESS) in each publication. Subsequently, the identified sentences are transformed using term frequency–inverse document frequency and classified with a support vector machine. The classification framework leverages the context surrounding the identified telescope mission keywords to provide relevant information to the classifier. The framework successfully classifies the usage of MAST-hosted missions with a 92.9% accuracy. Furthermore, our framework demonstrates robustness when compared to other approaches, considering common metrics and computational complexity. The framework’s interpretability makes it adaptable for use across observatories and other scientific facilities worldwide.more » « lessFree, publicly-accessible full text available December 19, 2025
-
Ono, Masahiro; Rothrock, Brandon; Otsu, Kyohei; Higa, Shoya; Iwashita, Yumi; Didier, Annie; Islam, Tanvir; Laporte, Christopher; Sun, Vivian; Stack, Kathryn; et al (, 2020 IEEE Aerospace Conference)MAARS (Machine leaning-based Analytics for Automated Rover Systems) is an ongoing JPL effort to bring the latest self-driving technologies to Mars, Moon, and beyond. The ongoing AI revolution here on Earth is finally propagating to the red planet as the High Performance Spaceflight Computing (HPSC) and commercial off-the-shelf (COTS) system-on-a-chip (SoC), such as Qualcomm's Snapdragon, become available to rovers. In this three year project, we are developing, implementing, and benchmarking a wide range of autonomy algorithms that would significantly enhance the productivity and safety of planetary rover missions. This paper is to provide the latest snapshot of the project with broad and high-level description of every capability that we are developing, including scientific scene interpretation, vision-based traversability assessment, resource-aware path planning, information-theoretic path planning, on-board strategic path planning, and on-board optimal kinematic settling for accurate collision checking. All of the onboard software capabilities will be integrated into JPL's Athena test rover using ROS (Robot Operating System).more » « less
An official website of the United States government
